PENGARUH KONSENTRASI CENDAWAN Beauveria bassiana TERHADAP MORTALITAS HAMA BOLENG (Cylas formicarius) UBI JALAR

Rokhanah1, Noertjahyani2*, Suparman1

1 Kantor Satuan Pemberdayaan Balai Perlindungan Tanaman Pangan dan Hortikultura Wilayah II
2 Proyek Studi Agroteknologi Fakultas Pertanian Universitas Wiraya Mukti, Sumedang 45362

e-mail: 1anna.buitdhi@gmail.com, 2noertjahyani@yahoo.com, suparman.tr@yahoo.com

ABSTRAK. Ubi jalar (Ipomoea batatas L.) merupakan tanaman pangan keempat penghasil karbohidrat setelah padi, jagung, dan ubi kaya. Salah satu hama utama yang mempengaruhi kualitas hasil ubi jalar adalah hama boleng (Cylas formicarius). Pengendalian hama boleng dengan insektisida sulfit dilakukan karena hanya ini berada dalam kelompok dan umbi. Beauveria bassiana adalah salah satu cendawan entomopatogen yang potensial mengendalikan beberapa hama tanaman. Penelitian ini dilakukan dengan tujuan untuk mempelajari pengaruh konsentrasi cendawan B. bassiana terhadap mortalitas hama boleng serta mendapatkan konsekuensi yang dapat memberi manfaat untuk penanaman hama boleng tertinggi. Penelitian ini berbasis verifikasi metode percoobaan laboratorium. Percoobaan dilakukan pada bulan Maret sampai dengan April 2018 di Laboratorium Kantor Satuan Pemberdayaan Balai Perlindungan Tanaman Pangan dan Hortikultura Wilayah II Kecamatan Subang Kabupaten Subang, Provinsi Jawa Barat. Rancangan Acak Lengkap sekala dengan rancangan lengkap dan konsekuensi B. bassiana sebagai perlakuan, yaitu: sampai aplikasi B. bassiana 5 g L-1, 10 g L-1 dan 15 g L-1. Tiap perlakuan dilakukan 6 kali. B. bassiana efektif mengendalikan hama boleng (C. formicarius). Konsekuensi 5 g L-1 B. bassiana mengendalikan hama boleng dengan prosentase mortalitas total 75% (mortalitas 82,22% pada jantan dan 67,78% pada betina).

KATA KUNCI: Beauveria bassiana, mortalitas hama boleng, ubi jalar

PENDAHULUAN

Kebutuhan makanan pokok selain beras di Indonesia dari tahun ke tahun semakin meningkat seiring dengan peningkatan jumlah penduduk. Penyediaan bahan makanan pokok perlu ditingkatkan baik kuantitas maupun kualitas agar tercukupinya kebutuhan bahan pangan. Salah satu makanan pokok penguang beragam sebagian penduduk di Indonesia yakni ubi jalar.

Ubi jalar (Ipomoea batatas L.) merupakan tanaman pangan penghasil karbohidrat ke-4 setelah padi, jagung, dan ubi kaya. Di pedesaan terutama daerah terisolir, masyarakat dan peran ubi jalar sangat besar terutama dalam hal peningkatan gizi dan ketahanan pangan (ILO & UNDP, 2012). Areal pertanaman ubi jalar di Indonesia terdapat di Pulau Jawa (39,67%), Maluku dan Irian Jaya (33,61%), Sumatera (18,56%), Bali dan Nusa Tenggara Barat (9,24%), Sulawesi (8,77%), dan Kalimantan (3,74%) (Badan Pusat Statistik, 2015). Selain sebagai bahan pangan, keistimewaan ubi jalar terletak pada kandungan serat arya yang sangat tinggi (pektin, selulosa, heman selulosa), vitamin, mineral, dan antioksidan serta mampu mengikat zat karsinogen penyebab kanker di dalam tubuh (Syamsir, 2008).

Ubi jalar memiliki kandungan gizi yang cukup tinggi, daya adaptasi yang cukup luis, dan memiliki nilai jual yang cukup baik. Meningkatnya industry rumah tangga terbuka bahan baku ubi jalar, komoditas ini menjadi rebutan dan bahkan ketika masih di ladang pun sudah menjadi incaran para pengusaha makanan ringan. Oleh karena itu, ubi jalar sudah menjadi komoditas yang sangat menguntungkan dan memiliki nilai ekonomi yang cukup tinggi.

karena kerasukan kecil pada umbi dan rasa pahit akibat senyawa terpenoid yang terbentuk. Umbi yang demikian tidak layak dikonsumsi.

Cendawan adalah salah satu bentuk biologis yang dapat digunakan untuk mengendalikan hama tanaman. Salah satu cendawan yang potensial adalah B. bassiana. Cendawan ini sangat efektif dalam mengendalikan hama, seperti untuk mencegah serangan hama kelapa sawit (Doxa cattana), penggerak batang (Lophobaria piperis), dan ulat merambat tanaman teh (Ectropis bhumitri) (Soetopo & Indrayani, 2007). Cendawan ini sangat potensial dalam mengendalikan hama, seperti untuk mencegah serangan hama kelapa sawit (Doxa cattana), penggerak batang (Lophobaria piperis), dan ulat merambat tanaman teh (Ectropis bhumitri) (Soetopo & Indrayani, 2007). Cendawan ini sangat potensial dalam mengendalikan hama, seperti untuk mencegah serangan hama kelapa sawit (Doxa cattana), penggerak batang (Lophobaria piperis), dan ulat merambat tanaman teh (Ectropis bhumitri) (Soetopo & Indrayani, 2007).

percobaan dilakukan secara acak. Setiap unit percobaan terdiri dari 3 petridish, sehingga jumlah keseluruhan sebanyak 72.

Perlakuan pada percobaan ini adalah konsentrasi cendawan entomopathogen B. bassiana yang terdiri dari: (A) Tanpa aplikasi B. bassiana, (B) Konsentrasi B. bassiana 5 g L-1, (C) Konsentrasi B. bassiana 10 g L-1, dan (D) Konsentrasi B. bassiana 15 g L-1. Imago hama boleng jantan dan betina masing-masing sebanyak 5 ekor dimasukkan ke dalam petridish. Pada alas petridish diberi kertas tisu dan disemprot air steril hingga lembab. Larutan semprot cendawan B. bassiana disemprotkan dengan konsentrasi sesuai dengan perlakuan percobaan, yaitu 5 g L-1, 10 g L-1 dan 15 g L-1 (Gambar 1), kemudian disemprotkan dengan tekanan perangsana sebanyak 2 kali pada petridish yang berisi imago C. formicaria. Setelah selesai aplikasi B. bassiana, serangga uli diberi umbi segar sebagai pakan. Selanjutnya penutup petridish menggunakan jaring kasa (Gambar 2).

Gambar 1. Perintisan larva yang segera B. bassiana
(a) Bakalan pada Betina, (b) Bakalan pada Betina dibalikkan, (c) Penimbangan bakalan B. bassiana pada yang sudah dibalikkan, (d) Peralatan bakalan B. bassiana dengan as amil, (e) Penimbangan (f) Peralatan (g) Larva segera B. bassiana diambil

Gambar 2. Kegiatan pemecahan perlakuan B. bassiana terhadap serangga uli
(a) larva segera dibalikan jantan dan betina, (b) pengamatan spora cendawan B. bassiana dibalikkan, (c) pola aksi serangga pada petridish, (d) aplikasi B. bassiana, (e) pembatas petridish menggunakan kasa
Pengamatan waktu serangga uji mulai mati, yaitu waktu (hari) yang dibutuhkan untuk mematikan minimal satu ekor serangga uji pada tiap perlakuan. Penganamatan perkembangan mortalitas *C. formicarius* dilakukan setiap pukul 07.00, dan dimulai satu hari sejak aplikasi agen hayati hingga hari ke-10. Pengamatan utama meliputi persentase mortalitas hama boleng jantan, betina dan total pada hari ke-10 setelah aplikasi *B. bassiana*, waktu murnifikasi, yaitu rentang waktu (hari) yang dibutuhkan satu ekor serangga yang telah menunjukkan gejala murnifikasi (terdapat musel yang tumbuh pada tubuh serangga uji).

Untuk mengetahui pengaruh konsentrasi *B. bassiana* terhadap mortalitas hama bolong, dilakukan penggunaan analisis of varians (Anava) taraf nyata 5%, dan untuk mengetahui konsentrasi *B. bassiana* yang memberikan mortalitas *C. formicarius* tertinggi digunakan uji Duncan (DMRT) taraf nyata 5%.

HASIL DAN PEMBAHASAN

Kepadatan spora sebagai agen hayati akan berpengaruh terhadap kematianannya dalam mengendalikan hama. Berdasarkan pengamatan dan perhitungan, kepadatan spora (konidia) per mil rata-rata adalah 1,83 x 10^3 spora. Kepadatan spora tersebut adalah kepadatan spora yang cukup efektif untuk mengendalikan organisme pengganggu tumbuhan, karena berada di atas batas ambang kepadatan spora minimum yang efektif digunakan yakni 10^5 - 10^6 (Leutari, 2014; Herdiaturni et al., 2014). Kepadatan spora konidia merupakan salah satu penentu patogenitas (Thalib et al., 2013).

Konsentrasi agen hayati *B. bassiana* berpengaruh terhadap lama waktu untuk mematikan *C. formicarius*. Tanpa aplikasi *B. bassiana*, *C. formicarius* hingga hari ke-10 setelah aplikasi agen hayati masih tetap hidup. Akan tetapi, dengan aplikasi agen hayati konsentrasi 5 g L^-1, 10 g L^-1 dan 15 g L^-1, waktu yang diperlukan untuk mematikan 1 ekor serangga *C. formicarius* adalah berbeda (Tabel 1). Semakin tinggi konsentrasi agen hayati, maka waktu yang diperlukan untuk mematikan imago *C. formicarius* semakin singkat.

Tabel 1. Pengaruh konsentrasi terhadap lama waktu untuk mematikan *C. formicarius*

<table>
<thead>
<tr>
<th>Konsentrasi B. bassiana (g L^-1)</th>
<th>Rata-rata Waktu untuk mematikan C. formicarius (hari)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3,22</td>
</tr>
<tr>
<td>10</td>
<td>2,61</td>
</tr>
<tr>
<td>15</td>
<td>2,56</td>
</tr>
</tbody>
</table>

Serangan hama bolong yang mempunyakan gejala kematian ditandai dengan tidak terjadinya aktivitas hidup, yakni dari pergerakan dan kegiatan makan. Ciri lainnya, adalah teksit imago mengeras dan kaku, serta mudah putih ketika digoreng. Kematian hama bolong yang terinfeksi cendawan *B. bassiana* terjadi melalui serangkaian proses yaitu pertama terjadi kontak antara propagul cendawan dengan serangga, dimana propagul menghasilkan enzim kitenase ekstraseptum saat menginvasi inangnya dan enzim ini menghidrolisis ikatan β-1,4-asetomido-2-deoks-D-glikosida pada kitin dan oligomer kitin (Sahai & Manocha, 1993 dalam Suryadi et al., 2013). Proses permekanan dan perkembangan *B. bassiana* menghambat senyawa nutrisi dari serangga (*B. bassiana* bersifat parasit pada *C. formicarius*), sehingga lama-kelamaan serangga akan lama (gerakannya lambat dan tidak mau makan) dan akhirnya mati. Pada percepatan imkan kematian serangga uji terjadi sekitar hari
kedua setelah aplikasi *B. bassiana* (Tabel 1). Waktu yang dibutuhkan untuk mematikan serangga (*C. formicarius*) tergantung dari virulensi patogen (*B. bassiana*), tingkat resistensi serangga hama dan juga lingkungan (Stenhouse 1967 dalam Susana Wowolung et al., 2015).

![Gambar 3. Perbedaan morfologi antena imago betina dan jantan *C. formicarius*](image)

(A) antena imago betina; (B) antena imago jantan, (C) ujung antena ruas ke-10 dari imago betina dan jantan

Tingkat kematian hari ke-10 yang dinyatakan sebagai mortalitas serangga uji *C. formicarius* jantan, betina dan total tertera pada Tabel 2. Perbedaan antara *C. formicarius* jantan dan betina secara morfologi terletak pada bentuk antena ruas ke-10 dan ukuran tubuh. Antena imago jantan bentuknya memanjang sedangkan antena imago betina berbentuk seperti gada (Gambar 3), dan ukuran tubuh imago jantan lebih kecil daripada yang betina (Indrias & Saleh, 2010).

Imago hama boleng tetap hidup seluruhnya (jantan dan betina) pada hari ke-10 (mortalitas 0%), jika tanpa aplikasi *B. bassiana*. Akan tetapi, dengan aplikasi *B. bassiana*, mortalitas total imago *C. formicarius* antara 75,00% - 84,44%. Aplikasi 5 g L⁻¹ *B. bassiana*, tingkat mortalitas jantan (82,22%) lebih tinggi daripada pada betina (63,78%) (Tabel 2). Ini menunjukkan bahwa *C. formicarius* betina lebih *survive* terhadap *B. bassiana* atau *C. formicarius* jantan lebih rentan terhadap *B. bassiana*. Seperti yang telah dilaporkan Frausen, 1935; Subramaniam, 1959 dalam Hashim et al. (2017), bahwa umumnya hama boleng betina dapat *survive* lebih lama dibandingkan jantan pada kondisi lingkungan yang sama. Oleh karena itu, untuk mencapai tingkat mortalitas yang relative sama antara jantan dan betina pada waktu yang sama, diperlukan aplikasi *B. bassiana* dengan konsentrasi lebih tinggi (10 g L⁻¹).

| TABLE 2. PERSENTASE MORTALITAS HAMA BOLENG PADA HARI KE-10 SETELAH APLIKASI CENDOWAN *B. bassiana*** |
|------------------|------------------|------------------|
| KONSENTRASI *B. bassiana* (g L⁻¹) | RATA-RATA MORTALITAS *C. formicarius* (%) | JANTAN | BETINA | TOTAL |
| 0 (tanpa aplikasi *B. bassiana*) | 0,00± 0,00 a | 0,00± 0,00 a | 0,00± 0,00 a |
| 5 | 82,2± 10,04 b | 67,7± 7,09 b | 75,0± 5,38 b |
| 10 | 84,4± 14,40 b | 81,1± 9,81 c | 82,7± 9,98 b |
| 15 | 85,6± 10,68 b | 83,3± 10,95 c | 84,4± 8,61 b |

Keterangan: Angka pada masing-masing kolom, yang dikelilingi huruf yang sama menunjukkan berbeda tidak nyata menurut uji Duncan taraf nyata 5%.
Tidak tercapai 100% tingkat mortalitas total, disebabkan lingkungan tumbuh B. bassiana kurang optimal untuk pertumbuhan, yaitu kelembaban hanya 67% -74%, sedangkan untuk perkecambahan sporangikonia yang optimal adalah > 90% (Sooipto & Indrayani, 2007). Hasil ini sejalan dengan hasil uji di laboratorium, B. bassiana dapat menyebabkan mortalitas hama boleng 80%-97% (Pangestu, 2011); mortalitas larva Scirpophaga incertulas hari ke-10 pada tanaman padi sebesar 57,5% -98,33% (Thalib et al., 2013). Perbedaan efektivitas B. bassiana dalam mengendalikan hama tergantung dari kependudukan kandida (virulensi dan patogenitas), stadium serangga yang dikelola, waktu aplikasi, cara aplikasi serta frekuensi aplikasi (Tantawei et al., 2015).

Perkembangan tingkat mortalitas imago jantan dan betina pada aplikasi B. bassiana terlihat pada Gambar 4. Sehingga bahwa hama keempat sejak aplikasi agen hayati, peningkatan mortalitas lebih lambat, dan mortalitas terus meningkat lebih tinggi mulai hari kelima hingga hari kesembilan. Hari keempat hingga tingkat mortalitas mencapai 85,56% (jantan), dan 83,33% (betina) pada aplikasi B. bassiana 15 g L⁻¹.

![Graph showing the mortality rate of male (jantan) and female (betina) boleng at different concentrations of B. bassiana.](image)

Gambar 4. Perkembangan mortalitas hama boleng jantan (A) dan betina (B) pada aplikasi B. bassiana dengan konsentrasi berbeda

Mumifikasi merupakan salah satu cara serangga yang telah terparasit lanjut oleh B. bassiana, dimana sebagian tubuh serangga ditumbui oleh miselium yang berwarna putih menyerupai kapas. Jika kondisi kelembaban lingkungan optimal, koloni cendawan dapat tumbuh sangat subur sehingga membentuk buntalan berwarna putih yang menutup permukaan serangga yang sudah terparasit (Purnama et al., 2015; Rizal et al., 2017). Mumifikasi merupakan proses selangutnya setelah serangga hanya terinfeksi, dan bahkan mati. Pada kelembaban yang tinggi spora B. bassiana berkembang, berpenetrasi dan memanfaatkan tubuh serangga hama sebagai substrat untuk pertumbuhan dan perkembangan (Indianti & Saleh, 2010). Setelah serangga hama mati, cendawan muncul melalui sambungan kulit luar serangga dan terus berkembang sehingga terlihat warna putih dari masa miselium yang tumbuh pada tubuh serangga *C. formicarium* (Gambar 5).
Berdasarkan pengamatan pada hari ke sepuluh setelah aplikasi *B. bassiana*, mumifikasi pada hama bolong tidak terjadi pada tiap perlakuan, kecuali pada perlakuan aplikasi 15 g L⁻¹ *B. bassiana*. Aplikasi 5 g L⁻¹ dan 10 g L⁻¹ *B. bassiana* walaupun tidak terjadi mumifikasi pada serangan uli, tetapi dapat memberikan tingkat mortalitas total yang berbeda tidak nyata di bandingkan dengan aplikasi 15 g L⁻¹ (Tabel 2). Keadaan ini menunjukkan bahwa serangga *C. formicarius* yang mati tidak selalu mengalami mumifikasi. Hal ini seperti penelitian Soetopo & Indrayani (2007), bahwa serangga yang mati tidak selalu disertai gejala pertumbuhan apop pada tubuhnya.

Berdasarkan hasil percobaan dapat disimpulkan bahwa *B. bassiana* efektif mengendalikan *C. formicarius*, dan aplikasi 5 g L⁻¹ dapat menyebabkan penurunan mortalitas total imago hama bolong sebesar 75% (82,22 % pada jantan dan 67,78 % pada betina). Aplikasi konsentrasi ini disarankan digunakan untuk mengendalikan *C. formicarius*.

UCAPAN TERIMA KASHI

Terima kasih kerja sama pakai kepada Koordinator dan seluruh staf Satuan Pelayanan Balai Perlindungan Tanaman Pangan dan Hortikultura Wilayah II atas fasilitas laboratorium yang telah diberikan sehingga penelitian ini dapat berlangsung dengan lancar. Terima kasih juga kami bautkan kepada Kepala Balai Besar Perumahan Organisme Pengganggu Tumbuhan (BBOPT) Jatiwaring yang telah membantu pelaksanaan penelitian ini.

DAFTAR PUSTAKA

